NEUROPROTECTIVE EFFECTS OF EXERCISE

СИНТИЯ РОБИНСОН, ДОКТОР НАУК, СПЕЦИАЛИСТ ПО ФИЗИЧЕСКОЙ ТЕРАПИИ ОТДЕЛЕНИЕ РЕАБИЛИТАЦИОННОЙ МЕДИЦИНЫ УНИВЕРСИТЕТ ВАШИНГТОНА Г. СИЭТЛ, ВАШИНГТОН США

THE AGING BRAIN

- Human brain begins to atrophy in 3rd decade of life
 - Alterations in structure and function
 - Frontal
 - Parietal
 - Temporal regions

THE AGING BRAIN

- Alterations in activity of neurons
 - Hippocampus
 - Frontal cortex
- Alterations in synaptic morphology
- Chronic inflammatory changes of immune system
 - Microglia/monocytes
 - Astrocytes
- Neurovascular Unit
 - Provides structural and functional basis for blood brain barrier
 - Changes associated with cerebrovascular alterations

Laitman & John, 2015

THE AGING BRAIN

- Changes in cerebrovascular function
 - Cerebral microvascular pathology
 - Reductions in cerebral blood flow
 - Reductions in glucose metabolism
 - Reductions in oxygen metabolism
 - Vascular leakage per high-resolution MRI and electron microscopy
 - Begins in hippocampus

NEURODEGENERATIVE DISEASES

- Disease processes affecting cognition
 - Mild cognitive impairment (MCI)
 - Dementia
 - Alzheimer's disease (AD)
- Alterations in brain structure and function exceed those expected for age and educational level
 - Frontal
 - Parietal
 - Temporal
 - Most profound atrophy of hippocampus

Kirk-Sanchez & McGough, 2014 Pedersen et al, 2014

- Exercise is essential to maintenance of
 - Physical function and physiologic health
 - Brain health and cognitive performance
- Human brain responds to moderate aerobic exercise
 - Regions vulnerable to age- and disease-related atrophy
 - Alterations in structure and function
- Epidemiological studies report reduced risk for MCI and dementia in older adults who maintain higher levels of physical activity

- Strong association of physical exercise with age-related declines in
 - Cognitive function
 - Sensorimotor function
- Exercise is associated with
 - Improved cardiovascular function
 - Improved blood flow within the CNS
 - Angiogenesis
 - Neurogenesis
- Molecular events responsible for this protective effect are not completely understood.

Laitman & John, 2015

Animal Studies

•Exercise strongly protects against neurovascular decline in aged mice

- Improved behavioral outcomes
- Improved markers of neuroplasticity
- Reduced inflammation
- Reduced complement induction
- •Potential molecular mechanisms
 - Astrocytic ApoE decreases in aged mice
 - Associated with age-related neurovascular decline
 - Risk factor for Alzheimer's disease
 - Exercise protects against this reduction in ApoE levels

Animal studies

•Exercise preconditioning exhibits neuroprotective effects after cerebral ischemia in rats

- 3 groups with 7 rats each
 - Control, Ischemia, Exercise + ischemia
- Run on treadmill 10-15 minutes at 5-7m/min, 5 days per week for 4 weeks
- Induced transient global cerebral ischemia
- Exercise + ischemia group demonstrated
 - Reduced rate of apoptotic and necrotic cell death in hippocampal CA1 neurons
 - Amelioration of ischemia-induced memory loss

Shamsaei et al, 2015

- Potential mechanisms by which preconditioning protects neurons
 - Alleviate over-activation of glutamate, which aggravates neuronal damage
 - Improved anti-oxidant capacity by blocking free radical formation
 - Tumor necrosis factor (TNF)- α mediates inflammation
 - Up-regulation of heat shock protein (HSP)-70 exerts effects through overexpression of anti-apoptic (pro-survival) proteins
 - Up-regulation of neurtrophic factors
 - Brain-derived neurotrophic factor (BDNF)
 - Nerve growth factor (NGF)

CARDIOVASCULAR RISK FACTORS

- Risk factors include
 - Hypertension (HTN)
 - Elevated cholesterol
 - Metabolic syndrome
 - Type 2 diabetes
 - Inflammation
 - Insulin resistance
- Cardiovascular risk factors are associated with
 - Cognitive decline
 - Brain atrophy

CARDIOVASCULAR RISK FACTORS HYPERTENSION

- Hypertension (HTN) is associated with
 - Reduced cerebral blood flow and metabolism
 - Frontal, temporal and subcortical regions
 - White matter disease and atrophy
- HTN is associated with
 - Midlife reduction in cognitive performance
 - Later life mild cognitive impairment (MCI) and dementia

CARDIOVASCULAR RISK FACTORS HYPERTENSION

- Pharmacologic management of HTN
 - Associated with neuroprotective effects
 - Less white matter disease
 - Elimination of increased risk for cognitive decline
- Prevention and management of HTN with exercise
 - Enhanced cerebral blood flow
 - Reduced brain tissue pathology
 - Protective effect
 - Brain health
 - Cognitive performance

CARDIOVASCULAR RISK FACTORS METABOLIC SYNDROME

- Associated with significantly increased risk for cognitive impairment among older adults
 - 23% increased risk per unit increase in number of abnormal factors
 - Body mass index (BMI)
 - Elevated triglycerides
 - Low levels of high-density lipoprotein cholesterol (HDL)
 - Hypertension (HTN)
 - Hyperglycemia

CARDIOVASCULAR RISK FACTORS METABOLIC SYNDROME

- High levels of inflammatory markers associated with cognitive decline
 - Interleukin-6
 - C-reactive protein
- Lower levels of inflammatory markers associated with exercise in older adults
 - Interleukin-6
 - C-reactive protein

CARDIOVASCULAR RISK FACTORS INSULIN RESISTANCE

- Insulin resistance in older adults is associated with reduced
 - Brain health
 - Cognitive performance
- Elevated plasma insulin levels associated with
 - Increased inflammatory agents

CARDIOVASCULAR RISK FACTORS INSULIN RESISTANCE

- Aerobic exercise associated with improvements in
 - Cardiorespiratory fitness
 - Glucose tolerance
 - Function within several cognitive domains
- Positive effects of exercise may be related to
 - Improved cardiovascular function
 - Improved cerebral vascular function
 - Reduced inflammation
 - Enhanced insulin-dependent energy metabolism

CARDIOVASCULAR RISK FACTORS AND EXERCISE

- Well-established relationship
 - Exercise
 - Reduction of cardiovascular risk factors
- Unclear relationship
 - Exercise
 - Cognitive performance
 - Not clear which cardiovascular factors serve as mediators

NEUROTROPHIC FACTORS AND EXERCISE

- Neuroprotective neurotrophins influence select regions of the brain, including the hippocampus
 - Facilitate plasticity
 - Enhance neurovasculature

NEUROTROPHIC FACTORS AND EXERCISE

- Exercise associated with increased release of neuroprotective neurotrophins
 - Brain-derived neurotrophic factor (BDNF)
 - Regulate growth, maintenance, and survival of neurons in adult brain
 - Short-term and long-term aerobic exercise
 - 3 months aerobic endurance training \rightarrow 4-fold increase in BDNF
 - Insulin-like growth factor (IGF-1)
 - Promotes neuronal growth, survival and differentiation
 - 6 months moderate to high level resistance training
- Majority of data comes from studies including young adults
 - Carry-over to older populations is not known

SPECIFICITY OF TRAINING

- Animal models reveal that different types of training produce different changes in the brain
 - High-demand acrobatic training
 - Synaptogenesis new circuits in response to novel learning experiences
 - Forced exercise
 - Increased angiogenesis in cerebellum
 - Voluntary exercise
 - Increased angiogenesis in cerebellum
 - Control group

INTENSITY & VARIETY OF TRAINING

- Doetinchem Cohort Study, n=1,927, 6- and 11-year follow-ups
 - Intensity and variation, but not duration, of physical activities positively associated with cognitive function
 - Processing speed
 - Memory
 - Mental flexibility
 - Overall

Cochran review of 11 randomized controlled trials (RCTs)

•Physical activity intended to improve cardiorespiratory fitness in order to improve cognitive function

- Average 14% increase in maximal oxygen consumption (VO₂ max)
- Large effects on
 - Motor function
 - Auditory attention
- Moderate effects
 - Cognitive speed
 - Visual attention

- Cardiovascular fitness (VO₂ max) in individuals with early Alzheimer's disease compared to non-demented controls is associated with
 - MRI-measured whole brain volume (Burns et al, 2008)
 - Gray and white matter volume of medial temporal and parietal regions (Honea et al, 2009)
- Findings suggest that cardiorespiratory fitness may offer a protective effect by modifying Alzheimer's disease-related changes in brain structure

- Brain regions characterized by reduced gray matter and white matter volume with age
 - Closely mirror brain regions preserved with exercise (Colcombe et al, 2003)
- Higher cardiorespiratory fitness levels are associated with
 - Preservation of hippocampal volume
 - Better spatial memory task performance (Erickson et al, 2009)
- Higher estimated VO_2 max is associated with
 - Greater brain activation in regions associated with executive control
 - Less brain activation in areas believed to interfere with executive control (Colcombe et al, 2004)

- Optimal exercise dosage is not known
 - Positive relationship among older adults between
 - Higher dose
 - Cognitive health
- Higher exercise intensity (7.8±3.9MET versus 0.63± 7.4 MET hours per week) is associated with preservation of brain volume
 - Exercise volume seems to moderate brain volume, especially in the medial temporal lobe (key area for executive function and memory)
- Exercise volume found to be protective
 - Approximates recommendations for all older adults
 - 7.8 MET is roughly equivalent to moderate exercise for 30 minutes 5 days per week

- Research findings from cross-sectional and prospective longitudinal studies (Kirk-Sanchez & McGough, 2014)
 - higher levels of physical activity
 - Provide protective benefit against cognitive decline
- Positive effects of aerobic exercise training have been demonstrated in diverse populations
 - Frail older adults (Hayes et al, 2014)
 - Post-stroke survivors (Hayes et al, 2014)

- Large observational studies- examine associations between midlife and late life activity and cognitive impairment
 - Lower risk for global cognitive decline
 - Lower risk for incident dementia
 - Honolulu-Asia Aging Study
 - 2,257 men followed for 3 decades
 - Men who walked <1 mile per day were at significantly greater risk (1.7-1.8) of dementia than men who walked >2 miles per day
 - Nurses' Health Study
 - 18,766 women followed for 10-15 years
 - Women ages 70-81 at time of follow-up who walked 90 minutes per week demonstrated higher cognitive scores than those who walked <40 minutes per week

- Randomized controlled trials (RCTs) using aerobic exercise as an intervention demonstrate effects on cognitive performance in individuals with MCI
 - N=138, 24-week home **walking** program **versus educational** control (Lautenschlager et al, 2008)
 - Modest improvement in global cognition
 - Alzheimer's Disease Assessment Scale-Cognitive Subscale
 - N=29, 6 months **high intensity aerobic** exercise **versus stretching** control (Baker et al, 2010)
 - Improvements on tests of executive function
 - N=50, 12 month **aerobic** exercise program, 90 min per day, 2 times per week **versus education** control (Suzuki et al, 2012)
 - Better general cognitive function
 - Immediate memory
 - Language ability

- Randomized controlled trials (RCTs) using aerobic exercise as an intervention demonstrate effects on cognitive performance that can be related to
 - Changes in regional brain volume
 - White and gray matter in prefrontal and temporal cortices
 - Anterior hippocampal volume ($2\% \uparrow vs 1.4\% \downarrow$)
 - Neurotrophin levels
 - Increased levels of brain-derived neurotrophic factor (BDNF)
 - Brain activation patterns
 - Increased activation in executive control regions
 - Decreased activation in other regions
 - Improved functional connectivity

- **Resistance training** has also demonstrated positive effects on cognitive performance
 - N=63 men, 24-week, moderate- and high-intensity resistance exercise group (50% and 80% one repetition maximum for upper and lower body) versus stretching control (Cassilhas et al, 2007)
 - Improvements in several cognitive domains
 - Increased levels of insulin growth factor (IGF-1)
 - N=155 women, 12-month 1-2 times weekly resistance training versus balance and toning control (Lui-Ambrose et al, 2010)
 - Selective attention
 - Conflict resolution

- Few studies have investigated the effect of **multicomponent exercise** interventions on cognitive function
 - N=74, 6 months, home balance and strengthening program intended to reduce falls
 - Improved executive function, especially response inhibition
 - N=389, 1 year, Tai Chi versus stretching and toning control
 - Modest differences in memory and global cognition
 - High drop out rate
 - Tai Chi
 - Multiple physical components
 - Incorporates engagement across several cognitive domains
 - Older adults who performed Tai Chi and aerobic exercise demonstrated better memory performance than controls performing one or the other, or no exercise

EXERCISE FOR PEOPLE WITH DEMENTIA

- Results of meta-analyses of exercise interventions for people with dementia
 - Do not consistently produce significant improvements in cognition
 - Do consistently produce improvements in
 - Physical performance
 - Behavior
 - Mood
- Dose may be a primary factor in effectiveness
 - Frequency
 - Intensity
 - Duration

EXERCISE SUMMARY

- Results of observational studies support a dose-dependent neuroprotective relationship between physical exercise and cognitive performance in older adults.
- Longitudinal studies provide evidence that higher levels of physical exercise are protective against cognitive decline.
- Physical function likely improves prior to cognitive performance
 - Provides a stronger foundation for progression of exercise dose
 - Intensity
 - Frequency
 - Duration
- Duration of exercise programs
 - 16-20 weeks to improve cardiorespiratory fitness in older adults
 - 6-12 months may be necessary for cognitive changes to be measurable

- Aerobic exercise- American College of Sports Medicine Guidelines (2009)
 - Frequency
 - Minimum 150 minutes moderate aerobic exercise per week (30 minutes, 5 days/week)
 OR
 - 60 minutes of vigorous exercise per week (20 minutes, 3 days per week)
 - Benefits can be achieved with 6-10 minute bouts of exercise, especially for individuals with limited capacity
 - Intensity
 - ≥60% of pretraining VO2 max
 - Duration
 - Minimum 16 weeks

• Resistance exercise- American College of Sports Medicine Guidelines (2009)

- Frequency
 - 2 days per week for major muscle groups
- Intensity
 - Resistance equivalent to 60%-80% of one repetition maximum
 - Older, deconditioned, frail may begin at 40%-50%
 - Strengthening- adjusted to allow completion of 8-12 repetitions/set
 - 2-3 sets per exercise
 - 2-3 minutes rest between sets
 - Recovery period 48-72 hours
 - Endurance
 - Decrease intensity to 40%-50% one repetition maximum
 - Increase repetitions to 15-20 /set

• Neuromuscular fitness - 2 days per week

- Balance
- Agility
- Coordination
- Flexibility- 2 days per week

- Structured training better than advice alone
- Individually designed program to accommodate physical and cognitive impairments
 - Promotes compliance and safety

SUMMARY

- Human brain atrophies with age
 - Accelerated in presence of neurodegenerative diseases
 - Accelerated in presence of cardiovascular disease
- Exercise has been show to
 - Reduce symptoms of cardiovascular disease
 - Protect neural structures
 - Increase brain volume
- Effectiveness of exercise appear to be dependent
 - Dose- intensity, frequency and duration
 - Type- aerobic, resistance, high demand coordination
- Exercise can be safely prescribed in diverse populations
 - Frail, post stroke

THANK YOU

Questions?

REFERENCES

- Angevaren M, Aufdemkampe G, Verhaar HJJ, et al. Physical activity and enhanced fitness to improve cognitive function in older people without a known cognitive impairment, Cochran Database of Syst Rev, 2008;3.
- Baker LD, Frank LL, Foster-Schubert, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol, 2010;67(1):71-79.
- Burns JM, Cronk BB, Anderson HS, et al. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 2008;71(3):210-216.
- Cassilhas RC, Viana VA, Grassman V, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc, 2007;39(8):1401-1407.
- Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci, 2003;58(2):176-180.
- Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness cortical plasticity and aging. Proc Natl Acad Sci USA, 2004;101(9):3316-3321.
- Erickson KI, Miller DL, Weinstein AM, et al. Physical activity and brain plasticity in late adulthood: A conceptual review. Ageing Res, 2012;3(1):34-47.
- Hayes SM, Alosco ML, Forman DE. The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Curr Geri Rep, 2014;3:282-290.

REFERENCES

- Honea RA, Thomas GP, Harsha A, et al. Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis Assoc Disord, 2009;23(3):188-197.
- Jernigan TL, Archibald SL, Fennema-Notestine C, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging, 2001;22,4:581-594
- Keus SHJ, Bloem BR, Hendricks EJM, et al on behalf of the Practice Recommendations Development Group. Evidence-based analysis of physical therapy in parkinson's disease with recommendations for practice and research. Movement Disorders, 2007;22(4):451-460.
- Kirk-Sanchez NJ & McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clinical Interventions in Aging, 2014;9:51-62.
- Laitman BM & John GR. Understanding how exercise promotes cognitive integrity in the aging brain. PLOS Biology, 2015;13(11):e1002300. doi:10.1371/journal.pbio.1002300
- Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA, 2008;300(9):1027-1037.
- Lui-Ambrose T, Nagamatsu LS, Graf P, et al. Resistance training and executive functions: A 12-month randomized controlled trial. Arch Intern Med, 2010;170(2):170-178.
- McGough EL, Kelly VE, Logsdon RG, et al. Associations between physical performance and executive function in older adults with mild cognitive impairment: Gait speed and the timed "Up & Go" test. Phys Ther, 2011;91(8):1198-1207.

REFERENCES

- Ohman H, Savikko N, Strandberg TE, Pitkala KH. Effect of exercise on cognitve performance in older adults with mild cognitive impairment or dementia: A systematic review. Dement Geriatr Cogn Disord, 2014;38:347-365.
- Pedersen MM, Holt NE, Grande L, et al. Mild cognitive impairment status and mobility performance: An analysis from the Boston RISE study. J Gerontol A Biol Sci Med Sci, 2014;69(12):1511-1518.
- Rogdel AL, Vitek JL, Alberts JL. Forced, not voluntary, exercise imporves motor function in Parkinson's disease patients. Neurorehabil Neural Repair, 2009;23(6):600-608.
- Shamsaei N, Khaksari M, Erfani S, et al. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res, 2015;10(8):1245-1250.
- Suzuki T, Shimada H, Makizako H, et al. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol, 2012;12:128.
- Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci, 2010;2:1-17.
- Voss MW, Erickson KI, Prakash RS, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun, 2013;28:90-99.
- Wang C, Yu J-T, Wang H-F, et al. Nonpharmacologic interventions for patients with mild cognitive impairment: A
 meta-analysis of randomized controlled trials of cognition-based and exercise interventions. J of Alzheimer's
 Disease, 2014;42:663-678.